#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Risk of thermal damage during transcanal endoscopic ear surgery


Authors: P. Beláková 1 ;  Richard Salzman 1 ;  M. Sněhota 2 ;  J. Vachutka 2
Authors place of work: Klinika otorinolaryngologie a chirurgie hlavy a krku LF UP a FN Olomouc 1;  Ústav lékařské bio fyziky, LF UP v Olomouci 2
Published in the journal: Otorinolaryngol Foniatr, 75, 2026, No. Ahead of Print, pp. 1-9.
Category: Přehledový článek
doi: https://doi.org/10.48095/ccorl2026-006

Summary

During transcanal endoscopic ear surgery, the light emitted from the endoscope heats the tympanic cavity. This heat has the potential to harm crucial structures of the middle and inner ear, as evidenced by in vitro, animal, and human surgical studies. This article reviews the research published to date on the potential thermal risks and damage incurred during endoscopic ear surgery. Our goal was to summarize the literature and suggest safety measures that can be routinely applied during endoscopic ear procedures. According to the published research papers, it is safer to use a smaller diameter endoscope (2.7 or 3 mm) connected to an LED light source. The light source should be set to the lowest output intensity that still allows the surgeon to safely perform the procedure. Regular use of suction and lavage is also recommended.

Keywords:

endoscopy – Middle ear – temperature – endoscopes – otologic surgical procedures


Zdroje
  1. Salzman R, Bakaj T, Heřman J et al. Endoskopická ušní chirurgie: shrnutí problematiky. Otorinolaryngol Foniatr 2016; 65(3): 184–187.
  2. MacKeith SA, Frampton S, Pothier DD. Thermal properties of operative endoscopes used in otorhinolaryngology. J Laryngol Otol 2008; 122(7): 711–714. Doi: 10.1017/ S0022215107000734.
  3. Ito T, Kubota T, Takagi A et al. Safety of heat generated by endoscope light sources in simulated transcanal endoscopic ear surgery. Auris Nasus Larynx 2016; 43(5): 501–506. Doi: 10.1016/j.anl.2015.12.014.
  4. Wright NT, Humphrey JD. Denaturation of collagen via heating: an irreversible rate process. Annu Rev Biomed Eng 2002; 4 : 109–128. Doi: 10.1146/annurev.bioeng.4.101001.131546.
  5. Rossmann C, Garrett-Mayer E, Rattay F et al. Dynamics of tissue shrinkage during ablative temperature exposures. Physiol Meas 2014; 35(1): 55–67. Doi: 10.1088/0967-3334/35/1/55.
  6. Aksoy F, Dogan R, Ozturan O et al. Thermal effects of cold light sources used in otologic surgery. Eur Arch Otorhinolaryngol 2015; 272(10): 2679–2687. Doi: 10.1007/s00405-014-3202-4.
  7. Bottrill I, Perrault DF Jr, Poe D. In vitro and in vivo determination of the thermal effect of middle ear endoscopy. Laryngoscope 1996; 106(2 Pt 1): 213-216. Doi: 10.1097/ 00005537-199602000-00020
  8. Yavuz Y, Skogås JG, Güllüoğlu MG et al. Are cold light sources really cold? Surg Laparosc Endosc Percutan Tech 2006; 16(5): 370-376. Doi: 10.1097/01.sle.0000213711.32805.15.
  9. Dundar R, Bulut H, Güler OK et al. Oval Window Temperature Changes in an Endoscopic Stapedectomy. J Craniofac Surg 2015; 26(5): 1704 –⁠ 1708. Doi: 10.1097/SCS.0000000000001934.
  10. Dundar R, Bulut H, Yükkaldiran A et al. Temperature rises in the round window caused by various light sources during insertion of rigid endoscopes: an experimental animal study. Clin Otolaryngol 2016; 41(1): 44 –⁠ 50. Doi: 10.1111/coa.12468.
  11. Ozturan O, Dogan R, Eren SB et al. Intraoperative thermal safety of endoscopic ear surgery utilizing a holder. Am J Otolaryngol 2018; 39(5): 585 –⁠ 591. Doi: 10.1016/ j.amjoto.2018.07.001.
  12. Ogurtsovskii YG, Kuznetsov AV. Endoscopic Xenon Light Sources. Biomedical Engineering 2003; 37(3): 163–164. Doi: 10.1023/A:1025875332388.
  13. Mitchell S, Coulson C. Endoscopic ear surgery: a hot topic? J Laryngol Otol 2017; 131(2): 117–122. Doi: 10.1017/S0022215116009828.
  14. Tomazic PV, Hammer GP, Gerstenberger C et al. Heat development at nasal endoscopes‘ tips: danger of tissue damage? A laboratory study. Laryngoscope 2012; 122(8): 1670–1673. Doi: 10.1002/lary.23339.
  15. Pan J, Tan H, Shi J et al. Thermal Safety of Endoscopic Usage in Robot-Assisted Middle Ear Surgery: An Experimental Study. Front Surg 2021; 8 : 659 –⁠ 688. Doi: 10.3389/ fsurg.2021.659688.
  16. Nelson JJ, Goyal P. Temperature variations of nasal endoscopes. Laryngoscope 2011; 121(2): 273–278. Doi: 10.1002/lary.21367.
  17. Milner TD, Jaffer M, Iyer A. Temperature and luminosity outputs of endoscopes used in transcanal endoscopic ear surgery: an experimental study. J Laryngol Otol 2023; 137(4): 368–372. Doi: 10.1017/S0022215122001013.
  18. Craig J, Goyal P. Insulating and cooling effects of nasal endoscope sheaths and irrigation. Int Forum Allergy Rhinol 2014; 4(9): 759–762. Doi: 10.1002/alr.21353.
  19. Kozin ED, Lehmann A, Carter M, et al. Thermal effects of endoscopy in a human temporal bone model: implications for endoscopic ear surgery. Laryngoscope 2014; 124(8): E332–E339. Doi: 10.1002/lary.24666.
  20. Souza E Silva TX, Nicolau ABF, Antunes ML. Thermal variation in human temporal bone using rigid endoscope. Braz J Otorhinolaryngol. 2023; 90(3):101381. Doi: 10.1016/j. bjorl.2023.101381.
  21. McCallum R, McColl J, Iyer A. The effect of light intensity on image quality in endoscopic ear surgery. Clin Otolaryngol 2018; 43(5):1266–1272. Doi: 10.1111/coa.13139.
  22. Vachutka J, Trneckova M, Salzman R et al. Optimal Light Source Intensity Setting in Endoscopic Ear Surgery. Otol Neurotol 2022; 43(2): e205 –⁠ e211. Doi: 10.1097/ MAO.000000000 0003410.
  23. Lewis T, Levin M, Sommer DD. Too Hot to Handle-Quantifying Temperature Variations in the Nasal Endoscope Ocular Assembly and Light Post. Am J Rhinol Allergy 2020; 34(2): 262–268. Doi: 10.1177/1945892419892182.
  24. Prasad N, Tavaluc R, Harley E. Thermal injury to common operating room materials by fiber optic light sources and endoscopes. Am J Otolaryngol 2019; 40(5): 631 –⁠ 635. Doi: 10.1016/j.amjoto.2019.05.007.
  25. Sandhu H, Turner R, Pozo JL. No smoke without fire –⁠ simple recommendations to avoid arthroscopic burns. Knee 2002; 9(4): 341–346. Doi: 10.1016/s0968-0160(02)00042-x.
  26. Kaya İ, Şahin FF, Uyanıkgil Y et al. Histopathology of thermal effects in endoscopic ear surgery: An experimental animal study. Laryngoscope Investig Otolaryngol 2024; 9(6): e1303. Doi: 10.1002/lio2.1303.
  27. Beláková P, Salzman R, Hyravý M et al. In Vivo Measurements of Middle Ear Temperature During Transcanal Endoscopic Ear Surgery. Otol Neurotol 2021; 42(8): e1037–e1041. Doi: 10.1097/MAO.0000000000003142.
  28. Terzi S, Dursun E, Özgür A et al. Can use of a cold light source in endoscopic middle ear surgery cause sensorineural hearing loss? Indian Journal of Otology 2016; 22(3): 213–216. Doi: 10.4103/0971-7749.187982.
  29. Moneir W, El-Ekiaby R, Elkahwagi M. Thermal injury in endoscopic ear surgery between reality and fiction. Eur Arch Otorhinolaryngol 2025; 282(8): 4021 –⁠ 4027. Doi: 10.1007/s00405-025-09332-w.
  30. Das A, Mitra S, Agarwal P et al. Prolonged intra-operative thermal exposure in endoscopic ear surgery: is it really safe? J Laryngol Otol 2020; 134(8): 727 –⁠ 731. Doi: 10.1017/S0022215120001449.
  31. Salzman R, Stárek I, Heřman J. Multiple cerebral venous thrombosis after endoscopic stapedotomy: A potential role of endoscope-produced heat. Acta Oto-Laryngologica Case Rep 2017; 2(1): 21 –⁠ 25. Doi: 10.1080/ 23772484. 2017.1291277.
  32. Shah PV, Kozin ED, Remenschneider AK, et al. Prolonged Radiant Exposure of the Middle Ear during Transcanal Endoscopic Ear Surgery. Otolaryngol Head Neck Surg 2015; 153(1): 102–104. Doi: 10.1177/0194599815574842.
  33. Latuska RF, Carlson ML, Neff BA et al. Auricular burns associated with operating microscope use during otologic surgery. Otol Neurotol. 2014; 35(2): 227–233. Doi: 10.1097/MAO. 0b013e3182a5d340.
  34. Parodi M, Thierry B, Blanchard M et al. Using a new otologic operating microscope: unexpected complications. Int J Pediatr Otorhinolaryngol 2015; 79(5): 755–757. Doi: 10.1016/ j.ijporl.2015.02.028.
  35. Hibst R, Saal D, Russ D et al. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes. J Biomed Opt 2010; 15(4): 048003. Doi: 10.1117/1.3475953.

Prohlášení o střetu zájmů

Prohlašuji, že v souvislosti s tématem, vznikem a publikací tohoto článku nejsem ve střetu zájmů a vznik ani publikace článku nebyly podpořeny žádnou farmaceutickou firmou. Toto prohlášení se týká i všech spoluautorů.

Grantová podpora

Podpořeno MZ ČR –⁠ RVO (FNOl 00098892) a interním grantem UPOL 2025-13.

ORCID autorů

P. Beláková 0000-0001-8417-8970,
R. Salzman 0000-0001-5705-5510,
M. Sněhota 0000-0002-8665-5643,
J. Vachutka 0000-0002-6568-6432.
Přijato k recenzi: 26. 5. 2025
Přijato do tisku: 5. 8. 2025
MUDr. Petra Beláková Klinika otorinolaryngologie a chirurgie
hlavy a krku LF UP a FN Olomouc Zdravotníků 248/7 779 00 Olomouc
Štítky
Audiologie a foniatrie Dětská otorinolaryngologie Otorinolaryngologie
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#